Image Retrieval Process Based on Relevance Feedback and Ontology Using Decision Tree
نویسندگان
چکیده
In this paper, another strategy for immediate features based image recovery is proposed. Image database is developed with low level texture features got from Gray Level Co-Occurrence Matrix (GLCM) and measurable techniques for Tamura. Semantic level inquiries from the user mapped to the low level peculiarities at recovery time to recover the required images. Images with more than one moderate features can be recovered by utilizing intersection of images recovered by each of the queried feature. Artificial Neural Network (ANN) is utilized as a part of the following steps in the wake of accepting user inputs. In spite of the fact that semantics are utilized as search key as a part of the beginning steps, low level features are utilized as a part of the ANN based searching in later steps. Back propagation Algorithm is utilized as a part of learning step. This ANN based relevance feedback technique enhances accuracy of immediate feature based image retrieval method. Decision tree (DT) can likewise be connected in relevance feedback stage. Decision tree is framed in training stage and images will be tested by of the decision tree. Relation storing ontology related information is utilized as a part of every phase of retrieval procedure to evacuate ambiguities identified with synonyms and hypernym-homonym sets.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملAn Overview of Relevance Feedback Methods Implemented in Content Based Image Retrieval
Content based image retrieval is a wide research area for manipulating bulky database. The retrieval process in content based image retrieval can be maximized by using relevance feedback technique. Relevance feedback is a mechanism for improving retrieval precision over time by allowing the user to implicitly communicate to the system to find which of the features are relevant and which are not...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملAdvanced Relevance Feedback Strategy for Precise Image Retrieval
Relevance feedback is effective technique for bridging the semantic gap in image retrieval which diminish semantic gap between low-level visual features and high-level semantic concepts for image retrieval. Currently, crucial image retrieval system is content-based image retrieval. To improve performance of proposed content based image retrieval system, automatic relevance feedback technique is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015